User:
Pass:
Remember Me
Forgot Pass Register

Our educational work is entirely supported by people like you. Your donations directly add new exhibits and new features to the website, and even helps us open the Prehistoria Natural History Center!




eXTReMe Tracker

Schools / Latest Stanford University Lectures ( Add One )

Lecture 10: Path Integral Formulation
Posted in Stanford University
In this lecture, Professor Susskind retouches on particle actions through the lagrangian, quantum field theory and path integral formulation.
Lecture 9: Equations of Quantum Field Theory
Posted in Stanford University
In this lecture Leonard Susskind tackles the motion of fields containing particles and quantum field theory. He also shows how basic processes are coded by a Lagrangian.
Lecture 8: Dirac Equation & Particle Spin
Posted in Stanford University
This lecture breaks down the theory and mathematics behind particle & isotopic spin (and half spin) in addition to the Dirac equation.
Lecture 7: Angular Momentum
Posted in Stanford University
Wrapping up the coverage of the quantum field theory, Professor Leonard Susskind discusses the theory behind angular momentum and the relevant mathematics.
Lecture 6: Diary Equation & Higgs Particles
Posted in Stanford University
Leonard Susskind continues elaborating the subject of quantum field theory, including, the diary equation and the hypothetical Higgs Bosons - the particle responsible for mass.
Lecture 5: Fermions & Energy Conservation
Posted in Stanford University
This lecture continues the discussion of the quantum field theory, focusing on fermions, waves and energy conservation.
Lecture 4: Quantum Fields & Particle Processes
Posted in Stanford University
This Stanford University lecture shows how quantum fields can be used to begin to describe various particle processes.
Lecture 3: What Is A Quantum Field?
Posted in Stanford University
This lecture discusses the properties and structures of quantum fields and describes their relation to particles.
Lecture 2: Quantum Field Theory
Posted in Stanford University
In this lecture Susskind discusses the quantum field theory (QFT), a theoretical framework for constructing quantum mechanical models of systems classically parametrized (represented) by an infinite number of fields.
Lecture 1: Introduction To Particle Physics
Posted in Stanford University
Leonard Susskind gives the introductory lecture of a course that will explore the newest revolutions in particle physics. This class explores the properties of light, particles and the quantum field theory.

Courses

Most Viewed

1. Lecture 5: Evolution
1. Lecture 5: Evolution

(Professor Lynn Rothschild discusses evolution in the context of space and time, focusing on the emergence of life in the context of planetary formation on Earth and possibly elsewhere, and the evolution of intelligence in here and beyond.)
Hits: 6053
Category: Stanford University
2. Lecture 1: Introduction To Particle Physics
2. Lecture 1: Introduction To Particle Physics

(Leonard Susskind gives the introductory lecture of a course that will explore the newest revolutions in particle physics. This class explores the properties of light, particles and the quantum field theory.)
Hits: 5620
Category: Stanford University
3. Lecture 6: Diary Equation & Higgs Particles
3. Lecture 6: Diary Equation & Higgs Particles

(Leonard Susskind continues elaborating the subject of quantum field theory, including, the diary equation and the hypothetical Higgs Bosons - the particle responsible for mass.)
Hits: 4976
Category: Stanford University
4. Lecture 7: Angular Momentum
4. Lecture 7: Angular Momentum

(Wrapping up the coverage of the quantum field theory, Professor Leonard Susskind discusses the theory behind angular momentum and the relevant mathematics. )
Hits: 4826
Category: Stanford University
5. Lecture 10: Darwin's Birthday
5. Lecture 10: Darwin's Birthday

(Professor Lynn Rothschild and Stephen Palumbi, Director of the Hopkins Marine Station, discuss Charles Darwin's career, from his childhood to the end of his life. Naturally, the theory of evolution is also addressed.)
Hits: 4292
Category: Stanford University
6. Lecture 1: Introduction to Astrobiology
6. Lecture 1: Introduction to Astrobiology

(In this introductory lecture of Professor Lynn Rothschild's Astrobiology and Space Exploration course, professor Seth Shostak of the SETI institute gives a witty and engaging presentation on the overall status of the field of astrobiology.)
Hits: 4255
Category: Stanford University
7. Lecture 2: Quantum Field Theory
7. Lecture 2: Quantum Field Theory

(In this lecture Susskind discusses the quantum field theory (QFT), a theoretical framework for constructing quantum mechanical models of systems classically parametrized (represented) by an infinite number of fields.)
Hits: 3745
Category: Stanford University
8. Lecture 10: Path Integral Formulation
8. Lecture 10: Path Integral Formulation

(In this lecture, Professor Susskind retouches on particle actions through the lagrangian, quantum field theory and path integral formulation.)
Hits: 3707
Category: Stanford University
9. Lecture 13: Advanced Life Support Systems
9. Lecture 13: Advanced Life Support Systems

(John Hogan, Bioengineering Branch NASA Ames Research Center, discusses modern research into life support systems and technologies that could be used to create a regenerative and sustainable environment in space.)
Hits: 3256
Category: Stanford University
10. Lecture 14: A Human Place in Outer Space
10. Lecture 14: A Human Place in Outer Space

(Dr. Yvonne Clearwater, Past Principle Investigator for NASA Habitability Research Program, explains the complexity of creating a habitable space station that both promotes research productivity and maintains astronaut health and morale. )
Hits: 3122
Category: Stanford University

Top Rated

1. Lecture 6: Diary Equation & Higgs Particles
1. Lecture 6: Diary Equation & Higgs Particles

(Leonard Susskind continues elaborating the subject of quantum field theory, including, the diary equation and the hypothetical Higgs Bosons - the particle responsible for mass.)
Rating: 2.86
Category: Stanford University
2. Lecture 03: Skeletal System II
2. Lecture 03: Skeletal System II

(This Berkeley lecture starts with an overview of cells involved in the skeletal system, from the overall structure of various cells to their shape, function, and identification. Then goes into the structure of the skull.)
Rating: 2.84
Category: Berkeley
3. Lecture 9: Equations of Quantum Field Theory
3. Lecture 9: Equations of Quantum Field Theory

(In this lecture Leonard Susskind tackles the motion of fields containing particles and quantum field theory. He also shows how basic processes are coded by a Lagrangian.)
Rating: 2.84
Category: Stanford University
4. Lecture 9: The Search for Life on Mars
4. Lecture 9: The Search for Life on Mars

(Dr. Janice Bishop (of the Carl Sagan Center at the SETI Institute and the NASA Ames Research Center) discusses the mineralogy and geology of Mars and the active search for life on the red planet.)
Rating: 2.83
Category: Stanford University
5. Lecture 11: Life Beyond Its Planet of Origin
5. Lecture 11: Life Beyond Its Planet of Origin

(Rocco Mancinelli, Bay Area Environmental Research Institute, discusses how recent research has is expanding our understanding of how organisms can survive and evolve outside of planet Earth.)
Rating: 2.83
Category: Stanford University
6. Lecture 12: Hematology I
6. Lecture 12: Hematology I

(Hematology is the branch of medicine that deals with blood, the blood-forming organs, and blood diseases. This discusses topics including plasma, multiple sclerosis, and erythropoiesis (the process by which red blood cells are formed).)
Rating: 2.83
Category: Berkeley
7. Lecture 10: Darwin's Birthday
7. Lecture 10: Darwin's Birthday

(Professor Lynn Rothschild and Stephen Palumbi, Director of the Hopkins Marine Station, discuss Charles Darwin's career, from his childhood to the end of his life. Naturally, the theory of evolution is also addressed.)
Rating: 2.83
Category: Stanford University
8. Lecture 10: Muscular System II
8. Lecture 10: Muscular System II

(Professor Diamond begins this lesson with the muscular structure of the abdomen, including the rectus abdominis and external oblique muscle. She ends the lecture with the muscles of the hip, including the gluteal muscle.)
Rating: 2.83
Category: Berkeley
9. Lecture 2: Realism & Formalism
9. Lecture 2: Realism & Formalism

(This lecture shows the importance and relevance of studying film. It presents mathematics as a form of abstract art, breaks down the style and method of realism and formalism, outlines the differences and similarities between film and photography.)
Rating: 2.83
Category: M.I.T.
10. Lecture 18: Lymphatic System
10. Lecture 18: Lymphatic System

(Professor Diamond discusses the lymphatic system, reviewing its constituents, including the location, composition and function of: lymphatic tissue (spleen, lymph nodes, thymus, and tonsils), lymphatic vessels, and lymph. )
Rating: 2.83
Category: Berkeley